Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic regularization of Newton method and its global performance

In this paper, we provide theoretical analysis for a cubic regularization of Newton method as applied to unconstrained minimization problem. For this scheme, we prove general local convergence results. However, the main contribution of the paper is related to global worst-case complexity bounds for different problem classes including some nonconvex cases. It is shown that the search direction c...

متن کامل

A Newton-Like Method for Convex Functions

A Newton-like method for convex functions is derived. It is shown that this method can be better than the Newton method. Especially good results can be obtained if we combine these two methods. Illustrative numerical examples are given. Mathematics Subject Classification: 65H05

متن کامل

Cubic regularization of Newton’s method for convex problems with constraints

In this paper we derive efficiency estimates of the regularized Newton’s method as applied to constrained convex minimization problems and to variational inequalities. We study a one-step Newton’s method and its multistep accelerated version, which converges on smooth convex problems as O( 1 k3 ), where k is the iteration counter. We derive also the efficiency estimate of a second-order scheme ...

متن کامل

The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions

For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$,  we definea  subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In  the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative  $mathrm{T}...

متن کامل

Minimizing Convex Functions by Continuous Descent Methods

We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2021

ISSN: 0022-3239,1573-2878

DOI: 10.1007/s10957-021-01838-7